Small Business Innovation Research/Small Business Tech Transfer

Modular Ultra-High Power Solar Array Architecture, Phase II

Completed Technology Project (2012 - 2014)

Project Introduction

Deployable Space Systems (DSS) will focus the proposed Phase 2 SBIR program on the hardware-based development and TRL advance of a highlymodularized and extremely-scalable solar array (Mega-ROSA) that provides immense power level range capability from 100kW to many Megawatts in size. Mega-ROSA will enable extremely high power spacecraft applications, including: Solar Electric Propulsion (SEP) spacecraft, SEP space-tug, and large-scale Planetary and Human Exploration missions because of its groundbreaking stowed packaging efficiency, high deployed stiffness / strength, lowcost and straightforward ground test capability. The innovative and synergistic Mega-ROSA solutions, to be validated to a TRL 6 level during the proposed Phase 2 program, will enable future high power missions through low cost (25-50% cost savings depending on PV and blanket technology), high specific power (>200 W/kg to 400 W/kg BOL at the wing level depending on PV and blanket technology), extremely compact stowage volume (>50 kW/m3 for very large arrays), high deployment reliability, platform simplicity (low parts count and reduced potential failure modes), high deployed strength/stiffness (>5X stiffer and stronger than rigid panel arrays of similar sizes), high voltage capability, scalability to ultra-high power (100kW to several Megawatts), and operability in unique environments (high/low illumination, high/low sun intensity and high radiation).

Primary U.S. Work Locations and Key Partners

Modular Ultra-High Power Solar Array Architecture

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Modular Ultra-High Power Solar Array Architecture, Phase II

Completed Technology Project (2012 - 2014)

Organizations Performing Work	Role	Туре	Location
Deployable Space	Lead	Industry	Goleta,
Systems, Inc(DSS)	Organization		California
Glenn Research Center(GRC)	Supporting	NASA	Cleveland,
	Organization	Center	Ohio

Primary U.S. Work Locations	
California	Ohio

Project Transitions

April 2012: Project Start

October 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137378)

Images

Project Image

Modular Ultra-High Power Solar Array Architecture (https://techport.nasa.gov/imag e/129456)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Deployable Space Systems, Inc (DSS)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Brian R Spence

Co-Investigator:

Brian Spence

Small Business Innovation Research/Small Business Tech Transfer

Modular Ultra-High Power Solar Array Architecture, Phase II

Completed Technology Project (2012 - 2014)

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - └─ TX03.1 Power Generation and Energy Conversion
 └─ TX03.1.1 Photovoltaic

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

